FACTORING A QUADRATIC TRINOMIAL BY GROUPING THE AC METHOD

A great method for factoring quadratic trinomials whose leading coefficient is not 1 is called factoring by grouping. This works quite nicely without having to *try* different numbers, especially if you find the factors in step 3 logically. If you can not find the factor in step three that work, then the polynomial is prime.

 $ax^2 + bx + c$

Example:

1	Given:	$5x^2 + 11x + 2$
2	Find the product <i>ac</i> .	(5)(2) = 10
3	Think of two factors of 10 that add up to 11:	1 and 10
4	Write the $11x$ as the sum of $1x$ and $10x$.	$5x^2 + 1x + 10x + 2$
5	Group the two pairs of terms:	$(5x^2 + 1x) + (10x + 2)$
6	Remove common factors from each group:	x(5x+1) + 2(5x+1)
7	Notice that the two quantities in parentheses are now identical. That means we can factor out a common factor of $(5x + 1)$:	(5x+1)(x+2)

Example:

1	Given:	$4x^2 + 7x - 15$
2	Find the product <i>ac</i> .	(4)(-15)=-60
3	Think of two factors of - 60 that add up to 7:	-5 and 12
4	Write the $7x$ as the sum of $-5x$ and $12x$:	$4x^2 - 5x + 12x - 15$
5	Group the two pairs of terms:	$(4x^2 - 5x) + (12x - 15)$
6	Remove common factors from each group:	x(4x-5) + 3(4x-5)
7	Notice that the two quantities in parentheses are now identical. That means we can factor out a common factor of $(4x - 5)$:	(4 <i>x</i> -5)(<i>x</i> +3)

Try the following:

1. $2x^2 - 7x - 15$

2. $6x^2 + 25x + 21$

1.
$$2x^2 - 7x - 15$$

2. $6x^2 + 25x + 21$

2 × 15 = 30	6 × 21 = 126
Find 2 numbers that multiply to 30	Find 2 numbers that multiply to 126
and subtract to 7. Signs are different	and add to 25. Signs are same, and both +.
since 15 is negative.	Do it logically, so you don't miss any.
Do it logically so you don't miss any.	1 and 126 no
1 and 30 no	2 and sixty something no
2 and 15 no	3 and forty something no
3 and 10 yes	You don't have to actually divide until you get
The bigger number, 10, gets the sign of the	close
middle which is	4, doesn't go in
It doesn't matter which goes first when you	5, doesn't go in
UNFOIL	6 and 21, not yet but closer
$2x^2 - 10x + 3x - 15$	7 and 18 Tadah! yes
Now factor by grouping.	BTW, if you can't determine the numbers that
Split down the middle	work, then the quadratic is prime.
2x(x-5) + 3(x-5)	Both positive
(x-5)(2x+3)	UNFOIL
	$6x^2 + 7x + 18x + 21$
	Now factor by arouping.

Now factor by grouping. x(6x + 7) + 3(6x + 7) If this step doesn't work, you made a mistake (x+3)(6x+7)

Note: It looks long because I wrote out the steps which were thinking steps. You don't have to write those.